EJERCICIOS

1)Una máquina térmica absorbe 360 J de calor y realiza un trabajo de 25 J en cada ciclo. Calcular: a) la eficiencia de la máquina, b) el calor liberado en cada ciclo. 
R: a) 6.94%, b) 335 J.


2) Una máquina térmica realiza 200 J de trabajo en cada ciclo y tiene una eficiencia de 30%. Para cada ciclo de la operación calcular: a) el calor que absorbe, b) el calor que se libera.

3) Una máquina térmica tiene una potencia de salida de 5 kW y una eficiencia de 25%. Si la máquina libera 8000 J de calor en cada ciclo, calcular: a) el calor absorbido en cada ciclo, b) el tiempo que tarda en completar cada ciclo.

4) Una máquina térmica trabaja con una eficiencia de 32% durante el verano, cuando el agua de mar usada para enfriamiento está a 20º C. La planta utiliza vapor a 350º C para accionar las turbinas. Suponiendo que la eficiencia de la planta cambia en la misma proporción que la
eficiencia ideal ¿Cuál es la eficiencia de la planta en invierno cuando el agua de mar se encuentra a 10º C? R: 33%.

5) Una central eléctrica nuclear genera 1200 MW y tiene una eficiencia de 30 %. Si se utilizara un río cuyo caudal es 106 kg/s para liberar el exceso de energía térmica, ¿en cuánto variaría la temperatura promedio del río? R: 0.95 K.

6) El calor absorbido por una máquina es el triple del trabajo que realiza. a) ¿Cuál es su eficiencia térmica?, b) ¿que fracción del calor absorbido se libera a la fuente fría? R: a) 33.3%, b) 66.7%.

7) Una máquina con una eficiencia de 20% se utiliza para acelerar un tren desde el reposo hasta 5 m/s. Se sabe que una máquina ideal (de Carnot) con los mismos depósitos fríos y caliente aceleraría el mismo tren desde el reposo hasta una velocidad de 6.5 m/s empleando la misma cantidad de combustible. Si la máquina emplea aire a 300 K como un depósito frío, encuentre la temperatura del vapor que sirve como depósito caliente. R: 175º C. 


8) Una máquina absorbe 1600 J de una fuente caliente y libera 1000 J a la fuente fría en cada ciclo. Calcular: a) la eficiencia de la máquina, b) el trabajo que realiza en cada ciclo, c) la potencia de salida de la máquina si cada ciclo dura 0.3s. R: a) 37.5%, b) 600 J, c) 2 kW.    
                                                                                                                                                                                                                                                                                                                                                                                                                                                        9) Una máquina térmica opera entre dos fuentes a temperaturas de 20º C y de 300º C. Calcular la máxima eficiencia de esta máquina.

10) La eficiencia de una máquina de Carnot es 30%. La máquina absorbe 800 J de calor por ciclo de una fuente caliente a 500 K. Calcular: a) el calor liberado por ciclo, b) la temperatura de la fuente fría. R: a) 560 J, b) 350 K.

11) Una máquina de Carnot tiene una potencia de salida de 150 kW. La máquina opera entre dos fuentes a temperaturas de 20º C y de 500º C. Calcular: a) la energía calórica que absorbe por hora, b) la energía calórica que pierde por hora.

12) Se ha propuesto construir una central de energía que haga uso del gradiente vertical de temperatura del océano, que opere entre la temperatura de la superficie, de 20º C, y otra a una profundidad de cerca de 1 km, de 5º C. a) Calcular la eficiencia de esa central. b) Si la potencia de salida de la central es 75 MW, calcular la energía térmica que se extrae del océano por hora. c) De acuerdo al resultado de a), ¿piensa que es posible esta central de energía? R: a) 5.1%, b) 5.3x1012 J.

13) Una máquina térmica opera en un ciclo de Carnot entre 80º C y 350º C. Absorbe 20000 J de calor de la fuente caliente por cada ciclo de 1 s de duración. Calcular: a) la máxima potencia de salida de esta máquina, b) el calor liberado en cada ciclo.

14) Una de las máquinas más eficientes que se han construido opera entre 430º C y 1870º C, con una eficiencia de 42%. Calcular: a) su eficiencia teórica máxima, b) su potencia de salida, si absorbe 1.4x105 J de calor cada segundo. R: a) 67.2%, b) 58.8 kW.